More Higher-Order Efficiency: Concentration Probability
Yutaka Kano
Journal of Multivariate Analysis, 1998, vol. 67, issue 2, 349-366
Abstract:
Based on concentration probability of estimators about a true parameter, third-order asymptotic efficiency of the first-order bias-adjusted MLE within the class of first-order bias-adjusted estimators has been well established in a variety of probability models. In this paper we consider the class of second-order bias-adjusted Fisher consistent estimators of a structural parameter vector on the basis of an i.i.d. sample drawn from a curved exponential-type distribution, and study the asymptotic concentration probability, about a true parameter vector, of these estimators up to the fifth-order. In particular, (i) we show that third-order efficient estimators are always fourth-order efficient; (ii) a necessary and sufficient condition for fifth-order efficiency is provided; and finally (iii) the MLE is shown to be fifth-order efficient.
Keywords: bias-adjustment; curved; exponential; distributions; Edgeworth; expansion; maximum; likelihood; estimator; Fisher-consistency (search for similar items in EconPapers)
Date: 1998
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(98)91770-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:67:y:1998:i:2:p:349-366
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().