Multidimensional Limit Theorems Allowing Large Deviations for Densities of Regular Variation
Alexander V. Nagaev and
Alexander Yu. Zaigraev
Journal of Multivariate Analysis, 1998, vol. 67, issue 2, 385-397
Abstract:
The sums of i.i.d. random vectors are considered. It is assumed that the underlying distribution is absolutely continuous and its density possesses the property which can be referred to as regular variation. The asymptotic expressions for the probability of large deviations are established in the case of a normal limiting law. Furthermore, the role of the maximal summand is emphasized.
Keywords: sums; of; i.i.d.; random; variables; maximal; summand; local; theorem; for; densities; marginal; density (search for similar items in EconPapers)
Date: 1998
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(98)91773-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:67:y:1998:i:2:p:385-397
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().