Geometric Ergodicity of Gibbs and Block Gibbs Samplers for a Hierarchical Random Effects Model
James P. Hobert and
Charles J. Geyer
Journal of Multivariate Analysis, 1998, vol. 67, issue 2, 414-430
Abstract:
We consider fixed scan Gibbs and block Gibbs samplers for a Bayesian hierarchical random effects model with proper conjugate priors. A drift condition given in Meyn and Tweedie (1993, Chapter 15) is used to show that these Markov chains are geometrically ergodic. Showing that a Gibbs sampler is geometrically ergodic is the first step toward establishing central limit theorems, which can be used to approximate the error associated with Monte Carlo estimates of posterior quantities of interest. Thus, our results will be of practical interest to researchers using these Gibbs samplers for Bayesian data analysis.
Keywords: Bayesian model; central limit theorem drift condition Markov chain Monte Carlo rate of convergence variance components (search for similar items in EconPapers)
Date: 1998
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(98)91778-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:67:y:1998:i:2:p:414-430
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().