Universally Consistent Regression Function Estimation Using Hierarchial B-Splines
Michael Kohler
Journal of Multivariate Analysis, 1999, vol. 68, issue 1, 138-164
Abstract:
Estimation of multivariate regression functions from i.i.d. data is considered. We construct estimates by empiricalL2-error minimization over data-dependent spaces of polynomial spline functions. For univariate regression function estimation these spaces are spline spaces with data-dependent knot sequences. In the multivariate case, we use so-called hierarchical spline spaces which are defined as linear span of tensor product B-splines with nested knot sequences. The knot sequences of the chosen B-splines depend locally on the data. Â We show the strongL2-consistency of the estimators without any condition on the underlying distribution. The estimators are similar to histogram regression estimators using data-dependent partitions and partitioning regression estimators based on local polynomial fits. The main difference is that the estimators considered here are smooth functions, which seems to be desirable especially in the case that the regression function to be estimated is smooth.
Keywords: data-dependent; partitions; integrated; squared; error; least; squares; estimate; polynomial; splines; regression; estimate; universal; consistency (search for similar items in EconPapers)
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(98)91782-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:68:y:1999:i:1:p:138-164
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().