EconPapers    
Economics at your fingertips  
 

On the Rate of Multivariate Poisson Convergence

Bero Roos

Journal of Multivariate Analysis, 1999, vol. 69, issue 1, 120-134

Abstract: The distribution of the sum of independent nonidentically distributed Bernoulli random vectors inRkis approximated by a multivariate Poisson distribution. By using a multivariate adaption of Kerstan's (1964,Z. Wahrsch. verw. Gebiete2, 173-179) method, we prove a conjecture of Barbour (1988,J. Appl. Probab.25A, 175-184) on removing a log-term in the upper bound of the total variation distance. Second-order approximations are included.

Keywords: Bernoulli; random; vectors; multivariate; Poisson; approximation; total; variation; distance (search for similar items in EconPapers)
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(98)91789-4
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:69:y:1999:i:1:p:120-134

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:69:y:1999:i:1:p:120-134