Nonparametric estimation of mixed partial derivatives of a multivariate density
R. S. Singh
Journal of Multivariate Analysis, 1976, vol. 6, issue 1, 111-122
Abstract:
On the basis of a random sample of size n on an m-dimensional random vector X, this note proposes a class of estimators fn(p) of f(p), where f is a density of X w.r.t. a [sigma]-finite measure dominated by the Lebesgue measure on Rm, P = (p1,...,pm), pj >= 0, fixed integers, and for x = (x1,...,xm) in Rm, f(p)(x) = [not partial differential]p1+...+pm f(x)/([not partial differential]p1x1 ... [not partial differential]pmxm). Asymptotic unbiasedness as well as both almost sure and mean square consistencies of fn(p) are examined. Further, a necessary and sufficient condition for uniform asymptotic unbisedness or for uniform mean square consistency of fn(p) is given. Finally, applications of estimators of this note to certain statistical problems are pointed out.
Keywords: Nonparametric; estimation; Multivariate; density (search for similar items in EconPapers)
Date: 1976
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0047-259X(76)90023-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:6:y:1976:i:1:p:111-122
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().