EconPapers    
Economics at your fingertips  
 

Probability inequalities for convex sets and multidimensional concentration functions

Marek Kanter

Journal of Multivariate Analysis, 1976, vol. 6, issue 2, 222-236

Abstract: This paper derives a sharp bound for the probability that a sum of independent symmetric random vectors lies in a symmetric convex set. In one dimension this bound is an improvement of an inequality first proved by Kolmogorov. The subject of multidimensional concentration functions is also treated.

Keywords: Sums; of; independent; random; vectors; convex; set; multidimensional; concentration; function (search for similar items in EconPapers)
Date: 1976
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0047-259X(76)90032-4
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:6:y:1976:i:2:p:222-236

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:6:y:1976:i:2:p:222-236