Probability inequalities for convex sets and multidimensional concentration functions
Marek Kanter
Journal of Multivariate Analysis, 1976, vol. 6, issue 2, 222-236
Abstract:
This paper derives a sharp bound for the probability that a sum of independent symmetric random vectors lies in a symmetric convex set. In one dimension this bound is an improvement of an inequality first proved by Kolmogorov. The subject of multidimensional concentration functions is also treated.
Keywords: Sums; of; independent; random; vectors; convex; set; multidimensional; concentration; function (search for similar items in EconPapers)
Date: 1976
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0047-259X(76)90032-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:6:y:1976:i:2:p:222-236
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().