Nonparametric Regression with Singular Design
Zhan-Qian Lu
Journal of Multivariate Analysis, 1999, vol. 70, issue 2, 177-201
Abstract:
Theories of nonparametric regression are usually based on the assumption that the design density exists. However, in some applications such as those involving high-dimensional or chaotic time series data, the design measure may be singular and may be likely to have a fractal (nonintegral) dimension. In this paper, the popular Nadaraya-Watson estimator is studied under the general setup that the continuity of the design measure is governed by the local or pointwise dimension. It will be shown in the iid setup that the nonparametric regression estimator achieves a convergence rate which is dependent only on the pointwise dimension. The case of time series data is also studied. For the latter case, a new mixing condition is introduced, and an assumption of marginal or joint density is completely avoided. Three examples, a fractal regression and two applications for predicting chaotic time series, are used to illustrate the implications of the obtained results.
Keywords: rate; of; convergence; high-dimensional; data; pointwise; dimension; fractal; design; chaotic; systems; nonlinear; prediction; strong; mixing (search for similar items in EconPapers)
Date: 1999
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(99)91813-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:70:y:1999:i:2:p:177-201
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().