Empirical Likelihood for Partially Linear Models
Jian Shi and
Tai-Shing Lau
Journal of Multivariate Analysis, 2000, vol. 72, issue 1, 132-148
Abstract:
In this paper, we consider the application of the empirical likelihood method to partially linear model. Unlike the usual cases, we first propose an approximation to the residual of the model to deal with the nonparametric part so that Owen's (1990) empirical likelihood approach can be applied. Then, under quite general conditions, we prove that the empirical log-likelihood ratio statistic is asymptotically chi-squared distributed. Therefore, the empirical likelihood confidence regions can be constructed accordingly.
Keywords: partially linear model; empirical likelihood; nonparametric likelihood ratio; sieve approximation; weight functions (search for similar items in EconPapers)
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (37)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(99)91866-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:72:y:2000:i:1:p:132-148
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().