On the Joint Distribution of a Quadratic and a Linear Form in Normal Variables
Alexander Schöne and
Wolfgang Schmid
Journal of Multivariate Analysis, 2000, vol. 72, issue 2, 163-182
Abstract:
In this paper a series representation of the joint density and the joint distribution of a quadratic form and a linear form in normal variables is developed. The expansion makes use of Laguerre polynomials. As an example the calculation of the joint distribution of the mean and the sample variance is considered. The truncated series is compared with the empirical distribution function which was determined in a Monte Carlo study.
Keywords: quadratic form; linear form; joint distribution; Laguerre polynomials (search for similar items in EconPapers)
Date: 2000
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(99)91860-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:72:y:2000:i:2:p:163-182
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().