Singularly Perturbed Markov Chains: Convergence and Aggregation
G. Yin,
Q. Zhang and
G. Badowski
Journal of Multivariate Analysis, 2000, vol. 72, issue 2, 208-229
Abstract:
Asymptotic properties of singularly perturbed Markov chains having measurable and/or continuous generators are developed in this work. The Markov chain under consideration has a finite-state space and is allowed to be nonstationary. Its generator consists of a rapidly varying part and a slowly changing part. The primary concerns are on the properties of the probability vectors and an aggregated process that depend on the characteristics of the fast varying part of the generators. The fast changing part of the generators can either consist of l recurrent classes, or include also transient states in addition to the recurrent classes. The case of inclusion of transient states is examined in detail. Convergence of the probability vectors under the weak topology of L2 is obtained first. Then under slightly stronger conditions, it is shown that the convergence also takes place pointwise. Moreover, convergence under the norm topology of L2 is derived. Furthermore, a process with aggregated states is obtained which converges to a Markov chain in distribution.
Keywords: singularly perturbed Markov chain; weak topology; pointwise convergence; convergence in L2; aggregation; weak convergence (search for similar items in EconPapers)
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(99)91855-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:72:y:2000:i:2:p:208-229
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().