Multivariate Survival Functions with a Min-Stable Property
Harry Joe and
Chunsheng Ma
Journal of Multivariate Analysis, 2000, vol. 75, issue 1, 13-35
Abstract:
This paper introduces and studies a class of multivariate survival functions with given univariate marginal G0, called min-stable multivariate G0-distributions, which includes min-stable multivariate exponential distributions as a special case. The representation of the form of Pickands (1981) is derived, and some dependence and other properties of the class are given. The functional form of the class is G0(A), where A is a homogeneous function on n+. Conditions are obtained for G0 and A so that a proper multivariate survival function obtains. Interesting special cases are studied including the case where G0 is a Gamma distribution.
Keywords: min-stable; min-infinite divisibility; weighted minima; positive dependence; copula (search for similar items in EconPapers)
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(99)91891-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:75:y:2000:i:1:p:13-35
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().