Design Adaptive Nearest Neighbor Regression Estimation
Emmanuel Guerre
Journal of Multivariate Analysis, 2000, vol. 75, issue 2, 219-244
Abstract:
This paper deals with nonparametric regression estimation under arbitrary sampling with an unknown distribution. The effect of the distribution of the design, which is a nuisance parameter, can be eliminated by conditioning. An upper bound for the conditional mean squared error of k-NN estimates leads us to consider an optimal number of neighbors, which is a random function of the sampling. The corresponding estimate can be used for nonasymptotic inference and is also consistent under a minimal recurrence condition. Some deterministic equivalents are found for the random rate of convergence of this optimal estimate, for deterministic and random designs with vanishing or diverging densities. The proposed estimate is rate optimal for standard designs.
Keywords: conditional nonparametric inference; design adaptation; k-NN nonparametric regression; nonasymptotic inference; nonparametric rates of convergence (search for similar items in EconPapers)
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(00)91901-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:75:y:2000:i:2:p:219-244
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().