EconPapers    
Economics at your fingertips  
 

Nonparametric Estimation of the Dependence Function in Bivariate Extreme Value Distributions

Javier Rojo Jiménez, Enrique Villa-Diharce and Miguel Flores

Journal of Multivariate Analysis, 2001, vol. 76, issue 2, 159-191

Abstract: The paper considers the problem of estimating the dependence function of a bivariate extreme survival function with standard exponential marginals. Nonparametric estimators for the dependence function are proposed and their strong uniform convergence under suitable conditions is demonstrated. Comparisons of the proposed estimators with other estimators are made in terms of bias and mean squared error. Several real data sets from various applications are used to illustrate the procedures.

Keywords: empirical distribution function; greatest convex minorant; weak convergence; Gaussian process (search for similar items in EconPapers)
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(00)91931-6
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:76:y:2001:i:2:p:159-191

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:76:y:2001:i:2:p:159-191