MU-Estimation and Smoothing
Z. J. Liu and
C. R. Rao
Journal of Multivariate Analysis, 2001, vol. 76, issue 2, 277-293
Abstract:
In the M-estimation theory developed by Huber (1964, Ann. Math. Statist.43, 1449-1458), the parameter under estimation is the value of [theta] which minimizes the expectation of what is called a discrepancy measure (DM) [delta](X, [theta]) which is a function of [theta] and the underlying random variable X. Such a setting does not cover the estimation of parameters such as the multivariate median defined by Oja (1983) and Liu (1990), as the value of [theta] which minimizes the expectation of a DM of the type [delta](X1, ..., Xm, [theta]) where X1, ..., Xm are independent copies of the underlying random variable X. Arcones et al. (1994, Ann. Statist.22, 1460-1477) studied the estimation of such parameters. We call such an M-type MU-estimation (or [mu]-estimation for convenience). When a DM is not a differentiable function of [theta], some complexities arise in studying the properties of estimators as well as in their computation. In such a case, we introduce a new method of smoothing the DM with a kernel function and using it in estimation. It is seen that smoothing allows us to develop an elegant approach to the study of asymptotic properties and possibly apply the Newton-Raphson procedure in the computation of estimators.
Keywords: data depth; discrepancy measure; estimating equation; kernel; multivariate median; M-estimation; MU-estimation; U-statistic (search for similar items in EconPapers)
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(00)91916-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:76:y:2001:i:2:p:277-293
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().