EconPapers    
Economics at your fingertips  
 

An Expectation Formula for the Multivariate Dirichlet Distribution

Gérard Letac, Hélène Massam and Donald Richards

Journal of Multivariate Analysis, 2001, vol. 77, issue 1, 117-137

Abstract: Suppose that the random vector (X1, ..., Xq) follows a Dirichlet distribution on q+ with parameter (p1, ..., pq)[set membership, variant]q+. For f1, ..., fq>0, it is well-known that (f1X1+...+fqXq)-(p1+...+pq)=f-p11...f-pqq. In this paper, we generalize this expectation formula to the singular and non-singular multivariate Dirichlet distributions as follows. Let [Omega]r denote the cone of all r-r positive-definite real symmetric matrices. For x[set membership, variant][Omega]r and 1[less-than-or-equals, slant]j[less-than-or-equals, slant]r, let detj x denote the jth principal minor of x. For s=(s1, ..., sr)[set membership, variant]r, the generalized power function of x[set membership, variant][Omega]r is the function [Delta]s(x)=(det1 x)s1-s2 (det2 x)s2-s3...(detr-1 x)sr-1-sr (detr x)sr; further, for any t[set membership, variant], we denote by s+t the vector (s1+t, ..., sr+t). Suppose X1, ..., Xq[set membership, variant][Omega]r are random matrices such that (X1, ..., Xq) follows a multivariate Dirichlet distribution with parameters p1, ..., pq. Then we evaluate the expectation [[Delta]s1(X1)...[Delta]sq(Xq) [Delta]s1+...+sq+p((a+f1X1+...+fqXq)-1)], where a[set membership, variant][Omega]r, p=p1+...+pq, f1, ..., fq>0, and s1, ..., sq each belong to an appropriate subset of r+. The result obtained is parallel to that given above for the univariate case, and remains valid even if some of the Xj's are singular. Our derivation utilizes the framework of symmetric cones, so that our results are valid for multivariate Dirichlet distributions on all symmetric cones.

Keywords: Dirichlet; distribution; gamma; distribution; Gaussian; hypergeometric; function; generalized; power; function; Jordan; algebra; Laplace; transform; Lauricella; function; multivariate; beta; distribution; multivariate; gamma; function; Riesz; measure; symmetric; cone; Wishart; distribution (search for similar items in EconPapers)
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(00)91928-6
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:77:y:2001:i:1:p:117-137

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:77:y:2001:i:1:p:117-137