EconPapers    
Economics at your fingertips  
 

Exact Strong Laws for Multidimensionally Indexed Random Variables

André Adler

Journal of Multivariate Analysis, 2001, vol. 77, issue 1, 73-83

Abstract: Consider independent and identically distributed random variables {X, Xn, n[set membership, variant]Zd+} with either EX=0 or E X=[infinity]. We establish strong laws so that [summation operator]n[less-than-or-equals, slant]N anXn/bN-->1 almost surely. Our procedure selects the constants {an, n[set membership, variant]Zd+} and {bN, N[greater-or-equal, slanted]1} so that these strong laws obtain in almost any possible setting.

Keywords: almost sure convergence; strong law of large numbers; slow variation (search for similar items in EconPapers)
Date: 2001
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(00)91909-2
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:77:y:2001:i:1:p:73-83

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:77:y:2001:i:1:p:73-83