EconPapers    
Economics at your fingertips  
 

A Class of Robust Principal Component Vectors

Hidehiko Kamiya and Shinto Eguchi

Journal of Multivariate Analysis, 2001, vol. 77, issue 2, 239-269

Abstract: This paper is concerned with a study of robust estimation in principal component analysis. A class of robust estimators which are characterized as eigenvectors of weighted sample covariance matrices is proposed, where the weight functions recursively depend on the eigenvectors themselves. Also, a feasible algorithm based on iterative reweighting of the covariance matrices is suggested for obtaining these estimators in practice. Statistical properties of the proposed estimators are investigated in terms of sensitivity to outliers and relative efficiency via their influence functions, which are derived with the help of Stein's lemma. We give a simple condition on the weight functions which ensures robustness of the estimators. The class includes, as a typical example, a method by the self-organizing rule in the neural computation. A numerical experiment is conducted to confirm a rapid convergence of the suggested algorithm.

Keywords: asymptotic; relative; efficiency; gross-error; sensitivity; influence; function; principal; component; analysis; robustness; against; outliers (search for similar items in EconPapers)
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(00)91936-5
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:77:y:2001:i:2:p:239-269

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:77:y:2001:i:2:p:239-269