Efficiency and Robustness of a Resampling M-Estimator in the Linear Model
Feifang Hu
Journal of Multivariate Analysis, 2001, vol. 78, issue 2, 252-271
Abstract:
In the literature, there are basically two kinds of resampling methods for least squares estimation in linear models; the E-type (the efficient ones like the classical bootstrap), which is more efficient when error variables are homogeneous, and the R-type (the robust ones like the jackknife), which is more robust for heterogeneous errors. However, for M-estimation of a linear model, we find a counterexample showing that a usually E-type method is less efficient than an R-type method when error variables are homogeneous. In this paper, we give sufficient conditions under which the classification of the two types of the resampling methods is still true.
Keywords: bootstrap; jackknife; M-estimator; resampling; method; variance; estimations; E-type; R-type (search for similar items in EconPapers)
Date: 2001
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(00)91951-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:78:y:2001:i:2:p:252-271
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().