On the Hausdorff Dimension of the Set Generated by Exceptional Oscillations of a Two-Parameter Wiener Process
Zacharie Dindar
Journal of Multivariate Analysis, 2001, vol. 79, issue 1, 52-70
Abstract:
S. Orey and S. J. Taylor (1974, Proc. London Math. Soc.28, 174-192) proved that for 0[less-than-or-equals, slant][lambda][less-than-or-equals, slant]1 the set E([lambda])={t[set membership, variant][0, 1] : lim suph[downwards arrow]0(2h log(1/h))-1/2 (W'(t+h)-W'(t))[greater-or-equal, slanted][lambda]} has Hausdorff dimension dim E([lambda])=1-[lambda]2 a.s. where W'(t) is a standard Wiener process. A corresponding result is obtained when W' is replaced by a two-parameter Wiener process.
Keywords: random; fractals; Wiener; process (search for similar items in EconPapers)
Date: 2001
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(00)91927-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:79:y:2001:i:1:p:52-70
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().