EconPapers    
Economics at your fingertips  
 

Inference for the Mean Difference in the Two-Sample Random Censorship Model

Qihua Wang and Jane-Ling Wang

Journal of Multivariate Analysis, 2001, vol. 79, issue 2, 295-315

Abstract: Inference for the mean difference in the two-sample random censorship model is an important problem in comparative survival and reliability test studies. This paper develops an adjusted empirical likelihood inference and a martingale-based bootstrap inference for the mean difference. A nonparametric version of Wilks' theorem for the adjusted empirical likelihood is derived, and the corresponding empirical likelihood confidence interval of the mean difference is constructed. Also, it is shown that the martingale-based bootstrap gives a correct first order asymptotic approximation of the corresponding estimator of the mean difference, which ensures that the martingale-based bootstrap confidence interval has asymptotically correct coverage probability. A simulation study is conducted to compare the adjusted empirical likelihood, the martingale-based bootstrap, and Efron's bootstrap in terms of coverage accuracies and average lengths of the confidence intervals. The simulation indicates that the proposed adjusted empirical likelihood and the martingale-based bootstrap confidence procedures are comparable, and both seem to outperform Efron's bootstrap procedure.

Keywords: empirical; likelihood; martingale-based; bootstrap; confidence; interval (search for similar items in EconPapers)
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(00)91974-2
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:79:y:2001:i:2:p:295-315

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:79:y:2001:i:2:p:295-315