Eigenstructures of Spatial Design Matrices
David J. Gorsich,
Marc G. Genton and
Gilbert Strang
Journal of Multivariate Analysis, 2002, vol. 80, issue 1, 138-165
Abstract:
In estimating the variogram of a spatial stochastic process, we use a spatial design matrix. This matrix is the key to Matheron's variogram estimator. We show how the structure of the matrix for any dimension is based on the one-dimensional spatial design matrix, and we compute explicit eigenvalues and eigenvectors for all dimensions. This design matrix involves Kronecker products of second order finite difference matrices, with cosine eigenvectors and eigenvalues. Using the eigenvalues of the spatial design matrix, the statistics of Matheron's variogram estimator are determined. Finally, a small simulation study is performed.
Keywords: discrete; cosine; transform; eigenvalue; eigenvector; kriging; Kronecker; product; Matheron's; estimator; variogram; spatial; statistics (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(00)91976-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:80:y:2002:i:1:p:138-165
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().