Minimax Hierarchical Empirical Bayes Estimation in Multivariate Regression
Samuel D. Oman
Journal of Multivariate Analysis, 2002, vol. 80, issue 2, 285-301
Abstract:
The multivariate normal regression model, in which a vector y of responses is to be predicted by a vector x of explanatory variables, is considered. A hierarchical framework is used to express prior information on both x and y. An empirical Bayes estimator is developed which shrinks the maximum likelihood estimator of the matrix of regression coefficients across rows and columns to nontrivial subspaces which reflect both types of prior information. The estimator is shown to be minimax and is applied to a set of chemometrics data for which it reduces the cross-validated predicted mean squared error of the maximum likelihood estimator by 38%.
Keywords: James-Stein; estimate; mean; squared; error; prior; information; subspace; shrinkage (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(00)91985-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:80:y:2002:i:2:p:285-301
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().