A Characterization of Poisson-Gaussian Families by Convolution-Stability
A. E. Koudou and
D. Pommeret
Journal of Multivariate Analysis, 2002, vol. 81, issue 1, 120-127
Abstract:
If the convolution of natural exponential families on d is still a natural exponential family, then the families are all Poisson-Gaussian, up to affinity. This statement is a generalization of the one-dimensional versions proved by G. Letac (1992, "Lectures on Natural Exponential Functions and Their Variance Functions," Instituto de Matemática pura e aplicada: Monografias de matemática, 50, Río de Janeiro) in the case of two families, and by D. Pommeret (1999, C. R. Acad. Sci. Ser. I328, 929-933) for more than two families.
Keywords: convolution; marginal; law; natural; exponential; families; Poisson-Gaussian; families; variance; function (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(01)91995-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:81:y:2002:i:1:p:120-127
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().