Density Deconvolution in the Circular Structural Model
Alexander Goldenshluger
Journal of Multivariate Analysis, 2002, vol. 81, issue 2, 360-375
Abstract:
We consider deconvolving bivariate irregular densities supported on the circumference of the unit circle. The errors are bivariate, and the observations are available on the plane. Assuming that the estimated density is smooth on the circle, we compute exact asymptotics of the minimax risks and develop asymptotically optimal estimators for the case of normal errors. The proposed estimators are automatically sharp minimax adaptive over a wide collection of smoothness classes. It is shown that the same rates of convergence hold for a variety of different types of error distributions. The interesting feature of the problem is that the optimal rates of convergence do not depend on the error distribution and are determined essentially by the problem geometry.
Keywords: density; deconvolution; circular; structural; model; rates; of; convergence; adaptive; estimation (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(01)92015-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:81:y:2002:i:2:p:360-375
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().