Estimating Risk and the Mean Squared Error Matrix in Stein Estimation
T. Kubokawa and
M. S. Srivastava
Journal of Multivariate Analysis, 2002, vol. 82, issue 1, 39-64
Abstract:
It is well known that the uniformly minimum variance unbiased (UMVU) estimators of the risk and the mean squared error (MSE) matrix proposed in the literature for Stein estimators can take negative values with positive probability. In this paper, improved truncated estimators of the risk, risk difference, and MSE matrix are proposed and shown to be better than the UMVU estimators in terms of mean squared error.
Keywords: inadmissibility; quadratic; loss; uniformly; minimum; variance; unbiased; estimators; risk; risk; difference; truncated; estimators; of; risk (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(01)92020-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:82:y:2002:i:1:p:39-64
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().