Large Sample Properties of Mixture Models with Covariates for Competing Risks
K. C. Choi and
X. Zhou
Journal of Multivariate Analysis, 2002, vol. 82, issue 2, 331-366
Abstract:
We study the large-sample properties of a class of parametric mixture models with covariates for competing risks. The models allow general distributions for the survival times and incorporate the idea of long-term survivors. Asymptotic results are obtained under a commonly assumed independent censoring mechanism and some modest regularity conditions on the survival distributions. The existence, consistency, and asymptotic normality of maximum likelihood estimators for the parameters of the model are rigorously derived under general sufficient conditions. Specific conditions for particular models can be derived from the general conditions for ready check. In addition, a likelihood-ratio statistic is proposed to test various hypotheses of practical interest, and its asymptotic distribution is provided.
Keywords: competing; risks; long-term; survivor; mixture; model; covariates; maximum; likelihood; estimator; likelihood-ratio; test; deviance; asymptotic; distribution (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(01)92022-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:82:y:2002:i:2:p:331-366
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().