EconPapers    
Economics at your fingertips  
 

Change Point Estimation by Local Linear Smoothing

Gérard Grégoire and Zouhir Hamrouni

Journal of Multivariate Analysis, 2002, vol. 83, issue 1, 56-83

Abstract: We consider the problem of estimating jump points in smooth curves. Observations (Xi,Yi) i=1,...,n from a random design regression function are given. We focus essentially on the basic situation where a unique change point is present in the regression function. Based on local linear regression, a jump estimate process t-->[gamma](t) is constructed. Our main result is the convergence to a compound Poisson process with drift, of a local dilated-rescaled version of [gamma](t), under a positivity condition regarding the asymmetric kernel involved. This result enables us to prove that our estimate of the jump location converges with exact rate n-1 without any particular assumption regarding the bandwidth hn. Other consequences such as asymptotic normality are investigated and some proposals are provided for an extension of this work to more general situations. Finally we present Monte-Carlo simulations which give evidence for good numerical performance of our procedure.

Keywords: nonparametric; regression; local; linear; regression; change; points; compound; Poisson; processes. (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(01)92038-X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:83:y:2002:i:1:p:56-83

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:83:y:2002:i:1:p:56-83