A Characterization of Joint Distribution of Two-Valued Random Variables and Its Applications
Sh. Sharakhmetov and
R. Ibragimov
Journal of Multivariate Analysis, 2002, vol. 83, issue 2, 389-408
Abstract:
We obtain an explicit representation for joint distribution of two-valued random variables with given marginals and for a copula corresponding to such random variables. The results are applied to prove a characterization of r-independent two-valued random variables in terms of their mixed first moments. The characterization is used to obtain an exact estimate for the number of almost independent random variables that can be defined on a discrete probability space and necessary conditions for a sequence of r-independent random variables to be stationary.
Keywords: copula; joint; distribution; dependence; r-independent; random; variables; stationary; processes; multiplicative; systems; limit; theorems (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(01)92059-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:83:y:2002:i:2:p:389-408
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().