Finite sample tail behavior of multivariate location estimators
Yijun Zuo
Journal of Multivariate Analysis, 2003, vol. 85, issue 1, 91-105
Abstract:
A finite sample performance measure of multivariate location estimators is introduced based on "tail behavior". The tail performance of multivariate "monotone" location estimators and the halfspace depth based "non-monotone" location estimators including the Tukey halfspace median and multivariate L-estimators is investigated. The connections among the finite sample performance measure, the finite sample breakdown point, and the halfspace depth are revealed. It turns out that estimators with high breakdown point or halfspace depth have "appealing" tail performance. The tail performance of the halfspace median is very appealing and also robust against underlying population distributions, while the tail performance of the sample mean is very sensitive to underlying population distributions. These findings provide new insights into the notions of the halfspace depth and breakdown point and identify the important role of tail behavior as a quantitative measure of robustness in the multivariate location setting.
Keywords: Breakdown; point; Data; depth; Halfspace; median; Monotonicity; Multivariate; L-estimators; Robustness; Tail; behavior (search for similar items in EconPapers)
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(02)00059-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:85:y:2003:i:1:p:91-105
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().