Approximations to the distribution of the sample correlation matrix
Tõnu Kollo and
Kaire Ruul
Journal of Multivariate Analysis, 2003, vol. 85, issue 2, 318-334
Abstract:
In this article, multivariate density expansions for the sample correlation matrix R are derived. The density of R is expressed through multivariate normal and through Wishart distributions. Also, an asymptotic expansion of the characteristic function of R is derived and the main terms of the first three cumulants of R are obtained in matrix form. These results make it possible to obtain asymptotic density expansions of multivariate functions of R in a direct way.
Keywords: Multivariate; cumulants; Multivariate; Taylor; expansion; Matrix; derivative; Characteristic; function; of; random; matrix; Multivariate; density; approximation (search for similar items in EconPapers)
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(02)00037-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:85:y:2003:i:2:p:318-334
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().