EconPapers    
Economics at your fingertips  
 

On the risk of estimates for block decreasing densities

Gérard Biau and Luc Devroye

Journal of Multivariate Analysis, 2003, vol. 86, issue 1, 143-165

Abstract: A density f=f(x1,...,xd) on [0,[infinity])d is block decreasing if for each j[set membership, variant]{1,...,d}, it is a decreasing function of xj, when all other components are held fixed. Let us consider the class of all block decreasing densities on [0,1]d bounded by B. We shall study the minimax risk over this class using n i.i.d. observations, the loss being measured by the L1 distance between the estimate and the true density. We prove that if S=log(1+B), lower bounds for the risk are of the form C(Sd/n)1/(d+2), where C is a function of d only. We also prove that a suitable histogram with unequal bin widths as well as a variable kernel estimate achieve the optimal multivariate rate. We present a procedure for choosing all parameters in the kernel estimate automatically without loosing the minimax optimality, even if B and the support of f are unknown.

Keywords: Multivariate; density; estimation; Block; decreasing; density; Minimax; risk; Nonparametric; estimation; Variable; kernel; estimate; Bandwidth; selection (search for similar items in EconPapers)
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(02)00028-3
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:86:y:2003:i:1:p:143-165

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:86:y:2003:i:1:p:143-165