Nonparametric likelihood ratio goodness-of-fit tests for survival data
Gang Li
Journal of Multivariate Analysis, 2003, vol. 86, issue 1, 166-182
Abstract:
Berk and Jones (Z. Wahrsch. Verw. Gebiete 47 (1979) 47) described a nonparametric likelihood test of uniformity that is more efficient, in Bahadur's sense, than any weighted Kolmogorov-Smirnov test at any alternative. This article shows how to obtain a nonparametric likelihood test of a general parametric family for incomplete survival data. A nonparametric likelihood ratio test process is employed to measure the discrepancy between a parametric family and the observed data. Large sample properties of the likelihood ratio test process are studied under both the null and alternative hypotheses. A Monte Carlo simulation method is proposed to estimate its null distribution. We show how to produce a likelihood ratio graphical check as well as a formal test of a parametric family based on the developed theory. Our method is developed for the right-censorship model, but can be easily extended to some other survival models. Illustrations are given using both real and simulated data.
Keywords: Censoring; Kolmogorov-type; test; Martingale; Monte; Carlo; simulation; Truncation (search for similar items in EconPapers)
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(02)00058-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:86:y:2003:i:1:p:166-182
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().