Rank estimation in reduced-rank regression
Efstathia Bura and
R. Dennis Cook
Journal of Multivariate Analysis, 2003, vol. 87, issue 1, 159-176
Abstract:
Reduced rank regression assumes that the coefficient matrix in a multivariate regression model is not of full rank. The unknown rank is traditionally estimated under the assumption of normal responses. We derive an asymptotic test for the rank that only requires the response vector have finite second moments. The test is extended to the nonconstant covariance case. Linear combinations of the components of the predictor vector that are estimated to be significant for modelling the responses are obtained.
Keywords: Asymptotic; test; Chi-squared; Weighted; chi-squared (search for similar items in EconPapers)
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(03)00029-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:87:y:2003:i:1:p:159-176
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().