Multivariate quadratic forms of random vectors
René Blacher
Journal of Multivariate Analysis, 2003, vol. 87, issue 1, 2-23
Abstract:
We obtain the distribution of the sum of n random vectors and the distribution of their quadratic forms: their densities are expanded in series of Hermite and Laguerre polynomials. We do not suppose that these vectors are independent. In particular, we apply these results to multivariate quadratic forms of Gaussian vectors. We obtain also their densities expanded in Mac Laurin series or in the form of an integral. By this last result, we introduce a new method of computation which can be much simpler than the previously known techniques. In particular, we introduce a new method in the very classical univariate case. We remark that we do not assume the independence of normal variables.
Keywords: Hermite; polynomials; Laguerre; polynomials; Fourier; transforms; Quadratic; forms; Gaussian; vectors; Moments (search for similar items in EconPapers)
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(02)00013-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:87:y:2003:i:1:p:2-23
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().