EconPapers    
Economics at your fingertips  
 

The affine equivariant sign covariance matrix: asymptotic behavior and efficiencies

Esa Ollila, Hannu Oja and Christophe Croux

Journal of Multivariate Analysis, 2003, vol. 87, issue 2, 328-355

Abstract: We consider the affine equivariant sign covariance matrix (SCM) introduced by Visuri et al. (J. Statist. Plann. Inference 91 (2000) 557). The population SCM is shown to be proportional to the inverse of the regular covariance matrix. The eigenvectors and standardized eigenvalues of the covariance matrix can thus be derived from the SCM. We also construct an estimate of the covariance and correlation matrix based on the SCM. The influence functions and limiting distributions of the SCM and its eigenvectors and eigenvalues are found. Limiting efficiencies are given in multivariate normal and t-distribution cases. The estimates are highly efficient in the multivariate normal case and perform better than estimates based on the sample covariance matrix for heavy-tailed distributions. Simulations confirmed these findings for finite-sample efficiencies.

Keywords: Affine; equivariance; Covariance; and; correlation; matrices; Efficiency; Eigenvectors; and; eigenvalues; Influence; function; Multivariate; median; Multivariate; sign; Robustness (search for similar items in EconPapers)
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(03)00045-9
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:87:y:2003:i:2:p:328-355

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:87:y:2003:i:2:p:328-355