EconPapers    
Economics at your fingertips  
 

Tail behaviour of Gaussian processes with applications to the Brownian pillow

Alex J. Koning and Vladimir Protasov

Journal of Multivariate Analysis, 2003, vol. 87, issue 2, 370-397

Abstract: In this paper we investigate the tail behaviour of a random variable S which may be viewed as a functional T of a zero mean Gaussian process X, taking special interest in the situation where X obeys the structure which is typical for limiting processes occurring in nonparametric testing of (multivariate) independency and (multivariate) constancy over time. The tail behaviour of S is described by means of a constant a and a random variable R which is defined on the same probability space as S. The constant a acts as an upper bound, and is relevant for the computation of the efficiency of test statistics converging in distribution to S. The random variable R acts as a lower bound, and is instrumental in deriving approximation for the upper percentage points of S by simulation.

Keywords: Tail; behaviour; Gaussian; processes; Brownian; pillow; Asymptotic; distribution; theory; Kolmogorov-type; tests; Cramer-von; Mises; type; tests; Anderson-Darling-type; tests; Multivariate; constancy; Multivariate; independence (search for similar items in EconPapers)
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(03)00059-9
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:87:y:2003:i:2:p:370-397

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:87:y:2003:i:2:p:370-397