An extension of the factorization theorem to the non-positive case
Pawel Kopciuszewski
Journal of Multivariate Analysis, 2004, vol. 88, issue 1, 118-130
Abstract:
This paper presents a method of determining joint distributions by known conditional distributions. A generalization of the Factorization Theorem is proposed. The generalized theorem is proved under the assumption that the support of unknown joint distribution may be divided into a countable number of sets, which all satisfy the relative weak positivity condition. This condition is defined in the paper and it generalizes the positivity condition introduced by Hammersley and Clifford. The theorem is illustrated with three examples. In the first example we determine a joint density in the case when the support of an unknown density is a continuous nonproduct set from Euclidean space . In the second example we seek the joint probability for the number of trials and the number of successes in Bernoulli's scheme. We also examine a simple example given by Kaiser and Cressie (J. Multivariate Anal. 73 (2000) 199).
Keywords: Hammersley-Clifford; Theorem; Positivity; condition; Conditional; distributions; Functionally; compatible; distributions (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(03)00055-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:88:y:2004:i:1:p:118-130
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().