A connection between supermodular ordering and positive/negative association
Tasos C. Christofides and
Eutichia Vaggelatou
Journal of Multivariate Analysis, 2004, vol. 88, issue 1, 138-151
Abstract:
In this paper, we show that a vector of positively/negatively associated random variables is larger/smaller than the vector of their independent duplicates with respect to the supermodular order. In that way, we solve an open problem posed by Hu (Chinese J. Appl. Probab. Statist. 16 (2000) 133) refering to whether negative association implies negative superadditive dependence, and at the same time to an open problem stated in Müller and Stoyan (Comparison Methods for Stochastic Modes and Risks, Wiley, Chichester, 2002) whether association implies positive supermodular dependence. Therefore, some well-known results concerning sums and maximum partial sums of positively/negatively associated random variables are obtained as an immediate consequence. The aforementioned result can be exploited to give useful probability inequalities. Consequently, as an application we provide an improvement of the Kolmogorov-type inequality of Matula (Statist. Probab. Lett. 15 (1992) 209) for negatively associated random variables. Moreover, a Rosenthal-type inequality for associated random variables is presented.
Keywords: Convex; order; Increasing; convex; order; Supermodular; order; Positive; and; negative; association; Kolmogorov-type; inequalities; Rosenthal; inequalities (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(03)00064-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:88:y:2004:i:1:p:138-151
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().