On a new multivariate two-sample test
L. Baringhaus and
C. Franz
Journal of Multivariate Analysis, 2004, vol. 88, issue 1, 190-206
Abstract:
In this paper we propose a new test for the multivariate two-sample problem. The test statistic is the difference of the sum of all the Euclidean interpoint distances between the random variables from the two different samples and one-half of the two corresponding sums of distances of the variables within the same sample. The asymptotic null distribution of the test statistic is derived using the projection method and shown to be the limit of the bootstrap distribution. A simulation study includes the comparison of univariate and multivariate normal distributions for location and dispersion alternatives. For normal location alternatives the new test is shown to have power similar to that of the t- and T2-Test.
Keywords: Multivariate; two-sample; test; Bootstrapping; Projection; method; Orthogonal; invariance; Cramer; test (search for similar items in EconPapers)
Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(03)00079-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:88:y:2004:i:1:p:190-206
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().