Existence conditions for the uniformly minimum risk unbiased estimators in a class of linear models
Guo-Qing Yang and
Qi-Guang Wu
Journal of Multivariate Analysis, 2004, vol. 88, issue 1, 76-88
Abstract:
This paper studies the existence of the uniformly minimum risk unbiased (UMRU) estimators of parameters in a class of linear models with an error vector having multivariate normal distribution or t-distribution, which include the growth curve model, the extended growth curve model, the seemingly unrelated regression equations model, the variance components model, and so on. The necessary and sufficient existence conditions are established for UMRU estimators of the estimable linear functions of regression coefficients under convex losses and matrix losses, respectively. Under the (extended) growth curve model and the seemingly unrelated regression equations model with normality assumption, the conclusions given in the literature can be derived by applying the general results in this paper. For the variance components model, the necessary and sufficient existence conditions are reduced as terse forms.
Keywords: Multivariate; normal; distribution; Multivariate; t-distribution; Convex; loss; Matrix; loss; Uniformly; minimum; risk; unbiased; estimator (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(03)00058-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:88:y:2004:i:1:p:76-88
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().