On consistent testing for serial correlation of unknown form in vector time series models
Pierre Duchesne () and
Roch Roy
Journal of Multivariate Analysis, 2004, vol. 89, issue 1, 148-180
Abstract:
Multivariate autoregressive models with exogenous variables (VARX) are often used in econometric applications. Many properties of the basic statistics for this class of models rely on the assumption of independent errors. Using results of Hong (Econometrica 64 (1996) 837), we propose a new test statistic for checking the hypothesis of non-correlation or independence in the Gaussian case. The test statistic is obtained by comparing the spectral density of the errors under the null hypothesis of independence with a kernel-based spectral density estimator. The asymptotic distribution of the statistic is derived under the null hypothesis. This test generalizes the portmanteau test of Hosking (J. Amer. Statist. Assoc. 75 (1980) 602). The consistency of the test is established for a general class of static regression models with autocorrelated errors. Its asymptotic slope is derived and the asymptotic relative efficiency within the class of possible kernels is also investigated. Finally, the level and power of the resulting tests are also studied by simulation.
Keywords: Vector; autoregressive; process; Exogenous; variables; Dynamic; simultaneous; equation; model; Kernel; spectrum; estimator; Diagnostic; test; Portmanteau; test (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(03)00126-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:89:y:2004:i:1:p:148-180
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().