The generalized near-integer Gamma distribution: a basis for 'near-exact' approximations to the distribution of statistics which are the product of an odd number of independent Beta random variables
Carlos A. Coelho
Journal of Multivariate Analysis, 2004, vol. 89, issue 2, 191-218
Abstract:
In this paper the concept of near-exact approximation to a distribution is introduced. Based on this concept it is shown how a random variable whose exponential has a Beta distribution may be closely approximated by a sum of independent Gamma random variables, giving rise to the generalized near-integer (GNI) Gamma distribution. A particular near-exact approximation to the distribution of the logarithm of the product of an odd number of independent Beta random variables is shown to be a GNI Gamma distribution. As an application, a near-exact approximation to the distribution of the generalized Wilks [Lambda] statistic is obtained for cases where two or more sets of variables have an odd number of variables. This near-exact approximation gives the exact distribution when there is at most one set with an odd number of variables. In the other cases a near-exact approximation to the distribution of the logarithm of the Wilks Lambda statistic is found to be either a particular generalized integer Gamma distribution or a particular GNI Gamma distribution.
Keywords: Product; independent; Beta; variables; Sum; independent; Gamma; variables; Generalized; Wilks; Lambda; Likelihood; ratio; statistic (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(03)00211-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:89:y:2004:i:2:p:191-218
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().