EconPapers    
Economics at your fingertips  
 

The limiting behavior of least absolute deviation estimators for threshold autoregressive models

Lihong Wang and Jinde Wang

Journal of Multivariate Analysis, 2004, vol. 89, issue 2, 243-260

Abstract: The asymptotic behavior of the least squares (LS) estimators of the parameters in threshold autoregressive models has been completely studied in the literature. It is well known that in some cases the least absolute deviation (LAD) estimators are superior to the LS-estimators. This paper is devoted to studying the strong consistency and the asymptotic normality of the LAD-estimators in two cases where the threshold is known and/or unknown.

Keywords: Asymptotic; normality; Least; absolute; deviation; estimation; Nonlinear; time; series; Strong; consistency; Threshold; autoregressive; models (search for similar items in EconPapers)
Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00033-8
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:89:y:2004:i:2:p:243-260

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:89:y:2004:i:2:p:243-260