Multidimensional dependency measures
Begoña Fernández Fernández and
José M. González-Barrios
Journal of Multivariate Analysis, 2004, vol. 89, issue 2, 351-370
Abstract:
The problem of dependency between two random variables has been studied throughly in the literature. Many dependency measures have been proposed according to concepts such as concordance, quadrant dependency, etc. More recently, the development of the Theory of Copulas has had a great impact in the study of dependence of random variables specially in the case of continuous random variables. In the case of the multivariate setting, the study of the strong mixing conditions has lead to interesting results that extend some results like the central limit theorem to the case of dependent random variables. In this paper, we study the behavior of a multidimensional extension of two well-known dependency measures, finding their basic properties as well as several examples. The main difference between these measures and others previously proposed is that these ones are based on the definition of independence among n random elements or variables, therefore they provide a nice way to measure dependency. The main purpose of this paper is to present a sample version of one of these measures, find its properties, and based on this sample version to propose a test of independence of multivariate observations. We include several references of applications in Statistics.
Keywords: Copulas; Strong; mixing; conditions; Multivariate; dependency; measures; Independence; and; hypothesis; testing (search for similar items in EconPapers)
Date: 2004
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00010-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:89:y:2004:i:2:p:351-370
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().