EconPapers    
Economics at your fingertips  
 

A lower bound on the performance of the quadratic discriminant function

Tristrom Cooke

Journal of Multivariate Analysis, 2004, vol. 89, issue 2, 371-383

Abstract: The quadratic discriminant function is often used to separate two classes of points in a multidimensional space. When the two classes are normally distributed, this results in the optimum separation. In some cases however, the assumption of normality is a poor one and the classification error is increased. The current paper derives an upper bound for the classification error due to a quadratic decision surface. The bound is strict when the class means and covariances and the quadratic discriminant surface satisfy certain specified symmetry conditions.

Keywords: Quadratic; discriminant; Lower; error; bound; Non-Gaussian (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(03)00209-4
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:89:y:2004:i:2:p:371-383

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:89:y:2004:i:2:p:371-383