A third-order optimum property of the maximum likelihood estimator
J. Pfanzagl and
W. Wefelmeyer
Journal of Multivariate Analysis, 1978, vol. 8, issue 1, 1-29
Abstract:
Let [theta](n) denote the maximum likelihood estimator of a vector parameter, based on an i.i.d. sample of size n. The class of estimators [theta](n) + n-1 q([theta](n)), with q running through a class of sufficiently smooth functions, is essentially complete in the following sense: For any estimator T(n) there exists q such that the risk of [theta](n) + n-1 q([theta](n)) exceeds the risk of T(n) by an amount of order o(n-1) at most, simultaneously for all loss functions which are bounded, symmetric, and neg-unimodal. If q* is chosen such that [theta](n) + n-1 q*([theta](n)) is unbiased up to o(n-1/2), then this estimator minimizes the risk up to an amount of order o(n-1) in the class of all estimators which are unbiased up to o(n-1/2). The results are obtained under the assumption that T(n) admits a stochastic expansion, and that either the distributions have--roughly speaking--densities with respect to the lebesgue measure, or the loss functions are sufficiently smooth.
Keywords: Asymptotic; theory; Edgeworth-expansions; higher-order; efficiency; complete; classes; maximum; likelihood; estimation; unbiasedness (search for similar items in EconPapers)
Date: 1978
References: Add references at CitEc
Citations: View citations in EconPapers (35)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0047-259X(78)90016-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:8:y:1978:i:1:p:1-29
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().