EconPapers    
Economics at your fingertips  
 

A refinement of the Riesz decomposition for amarts and semiamarts

Nassif Ghoussoub and Louis Sucheston

Journal of Multivariate Analysis, 1978, vol. 8, issue 1, 146-150

Abstract: A real-valued adapted sequence of random variables is an amart if and only if it can be written as a sum of a martingale and a sequence dominated in absolute value by a Doob potential, i.e., a positive supermartingale that converges to 0 in L1. The same holds for vector-valued uniform amarts with the norm replacing the absolute value.

Keywords: Amart; martingale; potential; Doob's; potential; semiamart; Riesz; decomposition (search for similar items in EconPapers)
Date: 1978
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0047-259X(78)90027-1
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:8:y:1978:i:1:p:146-150

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:8:y:1978:i:1:p:146-150