A refinement of the Riesz decomposition for amarts and semiamarts
Nassif Ghoussoub and
Louis Sucheston
Journal of Multivariate Analysis, 1978, vol. 8, issue 1, 146-150
Abstract:
A real-valued adapted sequence of random variables is an amart if and only if it can be written as a sum of a martingale and a sequence dominated in absolute value by a Doob potential, i.e., a positive supermartingale that converges to 0 in L1. The same holds for vector-valued uniform amarts with the norm replacing the absolute value.
Keywords: Amart; martingale; potential; Doob's; potential; semiamart; Riesz; decomposition (search for similar items in EconPapers)
Date: 1978
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0047-259X(78)90027-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:8:y:1978:i:1:p:146-150
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().