Radon-Nikodym theorems for set-valued measures
Fumio Hiai
Journal of Multivariate Analysis, 1978, vol. 8, issue 1, 96-118
Abstract:
Set-valued measures whose values are subsets of a Banach space are studied. Some basic properties of these set-valued measures are given. Radon-Nikodym theorems for set-valued measures are established, which assert that under suitable assumptions a set-valued measure is equal (in closures) to the indefinite integral of a set-valued function with respect to a positive measure. Set-valued measures with compact convex values are particularly considered.
Keywords: Radon-Nikodym; property; set-valued; measures; countable; additivity; atoms; Hausdorff; metric; selections; set-valued; functions; integrable; boundedness; Radon-Nikodym; derivatives; generalized; Radon-Nikodym; derivatives (search for similar items in EconPapers)
Date: 1978
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0047-259X(78)90022-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:8:y:1978:i:1:p:96-118
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().