Some properties of bivariate Gumbel Type A distributions with proportional hazard rates
Regina C. Elandt-Johnson
Journal of Multivariate Analysis, 1978, vol. 8, issue 2, 244-254
Abstract:
We call a set of univariate distributions with the same mathematical form but different parameter values a family . Consider a bivariate Gumbel Type A survival distribution, S12(x1, x2), defined in (2.1), for which both marginal distributions, S1(x1), S2(x2), belong to the same family, of distributions. It is proved in this paper that subject to weak conditions, the crude hazard rates, h1(t) and h2(t), are proportional if and only if the marginal hazard rates, [lambda]1(t) and [lambda]2(t), are proportional (Theorem 1). It is also shown that the survival functions of W = min(X1, X2), and of the identified minimum, Wi = Xi, for Xi
Keywords: Survival; functions; marginal; and; crude; hazard; rates; proportional; hazard; rates; extreme; value; distributions; Gumbel; Type; A; distributions; Gompertz; distributions (search for similar items in EconPapers)
Date: 1978
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0047-259X(78)90075-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:8:y:1978:i:2:p:244-254
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().